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The response of the motor apparatus to neural commands varies due to many causes. Fast

timescale disturbances occur when muscles fatigue. Disturbances with a slow timescale oc-

cur when muscles are damaged, or limb dynamics change due to development. To maintain

performance, motor commands need to adapt. Computing the best adaptation in response

to any performance error results in a credit assignment problem: what timescale is respon-

sible for this disturbance? Here we show that a Bayesian solution to this problem accounts

for numerous behaviors of animals during both short and long-term training. Our analysis

focuses on characteristics of the oculomotor system during learning, including effects of time

passage. However, we suggest that learning and memory in other paradigms, such as reach

adaptation, the adaptation of visual neurons, and retrieval of declarative memories, largely

follow similar rules.

Suppose we are designing the control mechanism of an autonomous robot. We recognize

that motors in various limbs will change their characteristics with use and with passage of time.

For example, with repeated use over a short period, a motor may experience heating and change
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its response transiently until it cools. On the other hand, with repeated use over a long period the

batteries may gradually discharge and the power will only return to near its original state after a

recharge. Both of these conditions will produce movement errors, requiring our controller to adapt

and send updated commands to the motors to produce the desired actions. However, our controller

should interpret these errors differently: errors that have a fast time scale should result in rapid

adaptive changes, but should be quickly forgotten. Errors that persist for extended periods of time

should result in slow adaptive changes.

It appears to us that the nervous system faces similar problems in controlling the body. Prop-

erties of our muscles change due to a variety of disturbances, such as fatigue1, disease, exercise,

and development. The states of these disturbances affect the motor gain, i.e., the ratio of move-

ment magnitude relative to the input signal. States of disturbances unfold over a wide range of

timescales. Therefore, when the nervous system observes an error in performance, it faces a credit

assignment problem: given that there are many possible perturbation timescales that could have

caused the error, which is the most likely? We think that the solution to the credit assignment prob-

lem should dictate the temporal properties of the resulting memory. That is, adaptation in response

to things that are likely to be permanent should be remembered, while adaptation in response to

things that appear transient should be forgotten.

Results

Figure 1 about here

2



Bayesian statistics allows us to formalize this problem and predict the behavior of a rational

learner. Suppose that the motor plant is affected by disturbances that can come in a variety of

timescales. Each disturbance will have a state, here represented as a random variable, which

evolves independent of other states (Fig. 1A). This implies that fatigue state does not directly

affect disease state. A long timescale disturbance, such as the general health state, will have a state

that goes up slowly and goes down slowly (Fig. 1B). A short timescale disturbance, such as fatigue

state, will have a state that rapidly changes. We assume that the moment-to-moment variance of

the states is higher for faster timescales (although all disturbances will have the same variance over

long times; see methods for details). Finally, we assume that the various states combine linearly

to affect the motor plant, resulting in perturbations to the motor gain. This motor gain defines the

movement and thus the movement error. From these assumptions, the Bayesian formalism directly

leads to our predictions about learning and memory.

The Bayesian learner observes the motor error (deviations from unity gain), but it needs to

estimate the states of the various potential disturbances. Is the error due to fatigue or something

more serious? As the states of the various timescales can never be known, the learner represents

its knowledge as a probability distribution. Before an observation is made, the learner has a prior

belief. For example, if there are only two states, then the prior belief is the yellow cloud in Fig. 1C.

When the learner observes an error, it has effectively measured the sum contribution of all states:

the diagonal line in Fig. 1C. This measurement will be affected by noise, and so the uncertainty

of the learner in its measurement is displayed as the thickness of the blue line. By combining the

measurement with its prior knowledge, the learner comes up with a new estimate (the posterior,
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red cloud).

How did the learner solve the credit assignment problem? When on a given trial it observes

a large error, the learner needs to estimate if this is due to a fast or due to a slow disturbance. In

this example, the first time the large disturbance happens the system infers that it is most likely due

to a fast disturbance as the prior belief is skewed into the direction of fast timescales. That is, the

yellow cloud in Fig. 1C has a larger variance along the fast state. This skew arises because of the

assumption that disturbances that have fast timescales are affected by greater variability. Therefore,

the red cloud in Fig. 1C is centered on a large contribution by the fast timescale. However, if the

system keeps observing large errors, this finding is best explained in terms of a slow disturbance

as a fast disturbance would be expected to quickly dissipate (Fig. 1D). This would explain why

adaptation tends to show a rapid initial phase followed by a slower phase of performance changes.

This credit assignment also may work in more complex situations. For example, say averaged

over the last hundred trials there is a negative perturbation while the last three trials had positive

perturbations. The system would infer a long timescale negative and a short timescale positive

disturbance. In this scenario, the sum of the states might be zero, indicating a motor gain of one,

but the learner knows that the various states have not returned to their baseline. This would explain

why adaptation followed by a limited period of de-adaptation does not wipe out the memory.

The Bayesian learnerś estimates of the contribution of each timescale, as well as the uncer-

tainties of these estimates, are constantly changing in response to the observed outcomes of each

motor command. Whenever a movement error is observed, the state estimates adapt and the un-
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certainty decreases. The learner thus becomes less sensitive to errors that follow. However, when

time passes without the learner observing consequences of its actions (for example, in darkness

or in sleep), the disturbances are expected to get smaller because each disturbance tends to vanish

over its own timescale. Therefore, the learnerś beliefs will change even when it cannot observe

motor error. However, when the learner is prevented from observing motor error, its uncertainty

increases. This makes the interesting prediction that the learner will be more sensitive to errors

that follow a period of sensory deprivation, and will therefore learn at a faster rate after a period of

darkness or sleep as compared to before that period.

Handling the motor errors in this way is the statistically optimal way for estimating the gain

of the motor plant. Here we show that this simple computational framework is able to account for

a large body of behavioral data.

Figure 2 about here

Short and long-term effects of saccadic gain adaptation

Motor adaptation has been extensively studied in the context of saccades. Saccades are rapid eye

movements that shift the direction of gaze from one target to another. The eyes move so fast that

visual feedback can not usually be used during the movement2. For that reason, any changes in the

properties of the oculomotor plant that are not compensated would lead to inaccurate saccades3.

It has been observed that if saccades overshoot the target, the motor gain (i.e., the ratio of eye

displacement to target displacement) tends to decrease and if they undershoot, the gain tends to
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increase. For example, when motor gain decreases to below one the nervous system must send a

stronger command to produce a movement of the correct size. The saccadic jump paradigm4 is

a way to probe such adaptation5: while the subject moves its eyes toward a target, the target is

moved. For a monkey, the rate of adaptation to this disturbance is similar to adaptation in response

to weakening of eye muscles6, 7, suggesting that the error is interpreted as a change in the eye plant.

Using this paradigm it is possible to probe the mechanism that is normally used to adapt to ongoing

changes of the oculomotor plant.

In an impressive range of experiments started by McLaughlin4, investigators have examined

how monkeys adapt their saccadic gain. The gain changes over time so that saccades progressively

become more precise (Fig. 2A). The rate of adaptation typically starts fast and then progressively

gets slower. This is a classic pattern that is reflected in numerous motor adaptation paradigms,

including reaching8–10. The same patterns are seen for the Bayesian learner (Fig. 2B). When the

gain rapidly changes, the credit is mostly assigned to fast states because the uncertainty is greater

for these states, resulting in rapid adaptation. Between trials, fast states decay rapidly, but this

decay is smaller in the slower states. If the perturbation is maintained, the relative contribution

of the fast states diminishes in comparison to the slow states (the blue bank becomes darker and

shifts to longer timescales in Fig. 2B). This implies that as training continues, the estimate of the

gain change is assigned to progressively slower timescales. In practical terms, this results in the

often reported observation that in response to a constant perturbation (i.e., a step change in the

apparent gain), performance of the learner shows an initially rapid rate of adaptation followed by

progressively slower rates.
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Now when the target no longer jumps (in trial 1400, the dashed line returns to one in Fig.

2A), saccade gains return to one. However, note that the state estimates do not return to baseline:

in trial 2900, the faster states are positive while the slower states are negative. Adaptation followed

by de-adaptation may not wash out the system.

Our model not only accounts for relatively brief periods of adaptation that are typically in-

volved in laboratory settings, it also accounts for behavior during long term periods of training.

For example, let us consider a recent experiment11 where the saccadic gain adaptation was set to

-50%. The monkey adapted for about 1500 saccades every day for 21 consecutive days, and then

after several days of washout trials, de-adapted back to a gain of unity. Interestingly, after training

in each day the monkey wore goggles that blocked vision. Multiple effects are visible in the data

(Fig. 2C). First, we note that there are several timescales during adaptation: there is a fast (100

saccades) and a slow (10 days) timescale. Second, we note that the starting point of performance

on each day is a bit higher than the final performance in the previous day. Third, re-learning rates

are affected by the periods of darkness. For example, the learning rate on the second day is much

faster than the first day. Finally, during the gain-down adaptation (days 1-22), performance fol-

lowing darkness has decayed toward a gain of unity. However, during wash-out (days 23-27), the

decay is toward a gain of 0.5. That is, the system appears to forget in different directions during

the two phases of learning.

Our modelś behavior (Fig. 2D) is surprisingly similar given that we used the same parameters

that we inferred from the single session adaptation in Hopp and Fuchs (Fig. 2B). The quantification
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of the systems estiamtes of disturbances shows that indeed the system infers longer timescales and

stronger deviations over time(deeper blues at longer timescales in colorplot in Fig. 2D). After the

initial period of gain-down adaptation training, a period of darkness follows. This means that the

monkey is allowed to make saccades, but is not allowed to observe the sensory consequences of

its actions (effectively, the noise on the observation is set to infinity). During the darkness period,

the learner becomes uncertain about its beliefs about the states of the motor system. Increased

uncertainty means that new observations about motor gain are relatively more precise than old

information which in turn leads to faster learning when the blind folds are removed. Consequently,

while both the monkey and the model forget some of their learning during darkness, they learn

faster during the second day than during the first day (quantified in Fig. 2E and F). Similar results

were found in a recent study of ocular reflexes12.

The model explains why forgetting is apparently in opposite directions during the first and

second halves of this experiment. Passage of time produces substantial decay in the fast states.

During gain-down adaptation, this results in a forgetting toward a gain of unity because the fast

states return to zero. By the end of training on day 22, only the slow states are negative, while all

the fast states are at zero. During washout, the training causes the fast states to rapidly become

positive, pushing the performance away from 0.5 and toward unity. We see example of this in Fig.

2B: when the gain is retuned to unity, it causes the fast states to become positive (i.e., yellow in fig.

2D). Even after 5 days of reversal the long timescales are still strongly negative(blue in fig 2D). As

a consequence, when time passes during the darkness period of the washout days, forgetting in the

fast states now makes the gain estimate drop toward 0.5.
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Figure 3 about here

Double reversal training of saccades

Many motor learning studies have attempted to quantify timescales of memory using an interfer-

ence paradigm. A common theme is a double reversal paradigm where the direction of visual errors

is changed twice. For example, in Kojima et al.13, the saccadic gain was initially increased, then

decreased until it reached unity, and finally increased again (Fig. 3A). The animals learned faster

during the second gain-up session than during the first (Fig. 3B). The reversal learning apparently

reduced the estimated gain of the motor plant back to one, yet the monkey still had saved some

aspect of its previous gain-up training as it showed savings.

The Bayesian model (using the same parameter values as before) explains this phenomenon

(Fig. 3C). At the end of the first gain-up session, most of the gain change is associated with the

slow states (they are positive, yellow in the colorplot in Fig. 3C). In the subsequent gain-down

session, errors produce rapid changes in the fast state so that by the time the gain estimate reaches

unity, the fast and slow states have opposite estimates: the fast states are negative, while the slow

states are positive. Therefore, the gain-down session did not reset the system because the latent

variables store the history of adaptation. In the subsequent gain-up session, the rate of re-adaptation

is faster than initial adaptation (Fig. 3D) because the fast states decay toward zero in between trials,

while the slow states are already positive. After about 100 saccades the speed gain from the low

frequencies is over and is turned into a slowed increase due to the decreased error term.
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In another set of experiments, the investigators13 observed that following a period of dark-

ness where the animal was not allowed to view sensory consequences of its motor commands,

there was a sudden jump in performance. In these experiments, gain-up training followed gain-

down training until saccade gains were restored to unity. Now the animals spent some time in the

dark. Afterwards, when the animal was tested in the gain-up task, saccade gain had spontaneously

increased (Fig. 3E). The same effect is seen for the Bayesian learner (Fig. 3F). In the dark period,

the Bayesian learner makes no observations and therefore cannot learn from error. However, the

estimates are still affected by passage of time: the fast states are negative and rapidly decay toward

zero, while the slow states are positive and only slowly decay (Fig. 3F colorplot). The sum is a

positive disturbance that after an initial transient, slowly decays. Consequently, by the end of the

dark period, the estimate has become gain-up. This effect is enhanced by fast learning following

the period of darkness.

A recent model of motor adaptation14 is functionally similar to the model introduced here

and explains much of the data in Fig. 3 using two integrators operating at different timescales.

However, for the Bayesian model, the passage of time during darkness not only produces changes

in the mean of the estimates, but it also makes the learner less certain of its belief. Therefore, the

Bayesian model makes an important prediction: extended periods of darkness should lead to faster

subsequent learning. We noted this earlier in the multi-day adaptation studies (Fig. 2E). However,

the effect is present even in a single day study. Here, the Bayesian model predicts that re-learning

will be faster when up-down adaptation is followed by a period of darkness than if the darkness

period is replaced with saccades in full light. Indeed, in the available data13, after darkness the gain
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change is much faster (5.8 ∗ 10−4 vs. 3.8 ∗ 10−4 for one monkey 9.3 ∗ 10−4 vs. 6.810−4 for the

other with p < 0.05 and p < 0.001 respectively). These effects of post-darkness change in rates

of learning come about only if passage of time has an influence on the uncertainty of the learner.

That is, passage of time affects the learnerś knowledge in terms of both its mean and variance,

demonstrating that sensory deprivation leads to faster learning. Models of memory that do not

consider uncertainty of the learner14 generally cannot account for such data.

If the darkness period is followed by a period without intra-saccadic target jumps (Fig. 3G),

then the animal does not show spontaneous recovery. At first glance this would suggest some kind

of context dependent recall. However, the Bayesian learner shows a similar behavior (Fig. 3H) and

the model explains that the effect is not due to context, but uncertainty. At the end of the darkness

period, the slow states are at a positive gain while the fast states are near zero. When darkness

is followed by gain-up training, all states are more uncertain and therefore rapidly move toward

a positive gain. On the other hand, when darkness is followed by unity gain training, the gain-up

status of the slow states is rapidly negated by the fast states that now become negative.

Figure 4 about here

Adaptation outside the motor system

Many phenomena outside of the realm of muscle properties can be expected to happen on multiple

timescales. For example, the contrast of visual scenes may follow similar rules15. To adapt op-

timally, the nervous system might need to estimate the current level of contrast from past values.
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Recently, investigators measured how visual neurons adapted to stimuli that changed on several

different timescales16 (Fig. 4A). It was found that adaptation timescales among the neurons were

longer as the interval between switches of contrast was lengthened. The Bayesian learner shows

very similar effects (Fig. 4B). Multiple timescale learning and adaptation may be optimal even for

sensory phenomena.

Analogous problems of multiple-timescale inference may also be solved by the nervous sys-

tem in certain cognitive tasks. For instance, in the retrieval of long-term declarative memories,

numerous studies over a century of research have explored ”spacing effects”: a specific item will

typically be remembered longer if the study trials for that item are spaced out over a long training

period rather than clustered within a short training period17–20. Fig. 4C illustrates the spacing effect

in one classic study of long-term memory for vocabulary words in a foreign language21. Spacing

effects might seem counterintuitive if we think of forgetting as a passive decay process with a

fixed time-constant, but the phenomenon should be familiar, from the often-repeated (and often-

ignored) advice of school teachers that steady studying over a whole term leads to better retention

of learning than intensive cramming right before the exam.

Our framework can explain spacing-dependent forgetting curves (Fig. 4D) as follows. Let

us assume that the strength of a memory trace reflects the modulation of a ”cognitive gain” and

that each encounter or study-trial with a specific item results in a measured gain of 1 for that item.

Intuitively, the model attempts to infer the changing importance of a given item, allowing that the

importance of different items could rise and fall over different timescales. These timescales are
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reflected in the item’s past use: when experience with an item has been spaced over a long period

of time, it provides evidence that the item is of long-term relevance. In contrast, an item with

clustered experience or practice is more likely to be of only short-term interest.

Discussion

Traditional models of adaptation simply change motor commands to reduce prediction errors22, 23.

We approached the problem from a different point of view: if the CNS knows that the body is

affected by perturbations that have multiple timescales, then the problem of learning in the CNS is

really one of credit assignment. The rational approach would be to do three things: First, the learner

should represent its knowledge of the properties of the motor system, including how disturbances

of various timescales can affect it. Second, it should represent the uncertainty it has about its

beliefs. Third, it should formulate the computational aim of adaptation in terms of optimally

combining what it knows about the properties of the motor plant with the current observations.

The experimental predictions of the presented model derive from the way knowledge about the

state of the motor plant is combined with noisy feedback into a statistically optimal estimate.

While our work may be the first model of learning where all three of these points are con-

sidered together, we have been greatly influenced by earlier studies that have largely considered

these points separately. Foremost among the previous works is the work of Smith et al.14. In that

model, it was proposed that the brain responds to error with at least two systems: one that is highly

sensitive to error but rapidly forgets, and another that has poor sensitivity to error but has strong
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retention. That model explained savings and spontaneous recovery and demonstrated that during

the period of darkness, motor estimates take the form of sum of two exponentials, one with a fast

and the other with a slow time constant. However, because that model did not incorporate uncer-

tainty, it could not explain the animalś rapid re-learning after darkness and sensory deprivation,

and it could not explain the lack of spontaneous recovery when darkness was followed by gain-one

training (Fig. 3).

The idea of multiple timescales have also been proposed in the context of connectionist

learning theory24 and in motor learning8,10. Connectionist models as well as earlier motor learn-

ing models have no systematic way of modeling uncertainty about timescales. The phenomenon

of spontaneous recovery in classical conditioning25 fits well into the framework presented here.

In classical conditioning, it has been proposed that the nervous system should keep a measure of

uncertainty about its current parameter estimates to allow an optimal combination of new informa-

tion with current knowledge26. That model included a measure of uncertainty and a mechanism

mediated by neuromodulators for allowing fast changes at catastrophic moments. The multiple

timescales of potential disturbances proposed here may lead to similar results as fast timescales

may take care of catastrophic fast changes. Moreover, Kalman filters have been used for systems

identification in engineering to solve similar problems27. Finally, even the earliest studies of ocu-

lomotor adaptation realized that the objective of adaptation is to allow precise movement with a

relentlessly changing motor plant4. Our approach unifies these ideas in a coherent computational

framework.
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In the saccade experiments that we considered, darkness corresponds to a period of time

where the animal makes eye movements but is not allowed to observe the visual consequences of

its motor commands. Because our model shows how a rational learner would update its knowledge

when it is faced with sensory deprivation, it gives one explanation as to why there are improved

rates of learning after periods of darkness. It is interesting to view sleep in a similar framework:

as essentially a period where the brain simulates movements but is deprived of actual feedback.

The post-sleep improvements in rates of learning may be partly due to an increased uncertainty

regarding the states of the internal model.

There are features of adaptation that our model in its current form does not explain. For

saccades, three kinds of asymmetries are observed: Adaptation up is faster than adaptation down,

unlearning after up adaptation is slower and spontaneous recovery is only observed in the up di-

rection. It is an exciting question how these asymmetries arise. We know that our body is not

symmetric with respect to strengthening and weakening of muscles. For example, we often expe-

rience errors due to rapid fatigue but errors due to fast strengthening are really quite rare. Such

asymmetric history of perturbations can in principle explain both the fact that gain-down learning

is slower than gain-up, and that spontaneous recovery is present only in the gain-up direction. The

asymmetries may, however, also indicate effects stemming from suboptimal neural computation.

Similarly, for the adaptation of visual neurons there exists a clear asymmetry between upward and

downward adaptation. The nervous system should also have some way of learning the importance

of each possible timescale. Hierarchical Bayesian models allow a straightforward modeling of

such phenomena. Moreover, the model presented here uses a simple definition of time. For ex-
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ample, the nervous system may model that our motor system changes less if we do not move than

if we move. Such a situation may be analogue to a Kalman filter that runs fast in the presence

of movement and much slower in the absence of movement. It is known that adaptation is highly

context dependent28–30 and indeed we should only generalize from one situation to another situa-

tion that is similar. In this model we cut out all properties apart from time and error magnitude to

predict purely temporal adaptation phenomena.

It should be clear that we modeled the animal’ s learning here as if the errors were due

to the behavior of the motor plant, when in fact errors were due to clever manipulations in the

outside world. As long as changes in the world happen according to similar rules or the subject

does not know it is dealing with changes in the outside world, our model extends well to those

situations. However, it is likely that the world goes through more step type changes than our body

- in particular the world in a neuroscientistś laboratory! In that case, the nervous system has to

solve an additional credit assignment problem: Is the error due to a change in my body or due

to a change in the world? We find it intriguing that different species may have different ways of

solving this problem. Gain adaptation training in monkeys generalizes broadly to other types of

saccades 31, generally agreeing with our simple model of associating the errors to changes in the

oculomotor plant. However, similar training in humans is context specific and shows more specific

generalization patterns, suggesting that the credit assignment is mostly to the model of the world

32. However, humans have ample experience with changes in the world, such as the wearing of

glasses, that demand specific context dependent patterns of adaptation.
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It should be emphasized that we did not model the mechanisms of any specific memory, but

rather attempted to present a general model for all memories based on a generalization from how

the brain would learn to control the motor plant. For example, let us consider spacing training tri-

als. Spacing effects have been observed robustly across many timescales and stimuli33, 34. Spacing

effects fall out naturally and quite generally from making rational statistical inferences about the

timescales over which a given piece of informationś relevance is changing. This is the same kind of

inference that the motor system must make about potential motor disturbances. Anderson35 origi-

nally suggested a similar view of memory retrieval, inspired by a model for predicting library-book

access, and he showed how this model could predict spacing effects and other dynamical aspects of

declarative memory. Our results suggest that common principles of memory and forgetting may be

at work more broadly across the nervous system. Both higher-level cognitive learning and lower-

level sensorimotor learning face a shared challenge of adapting their behavior to processes in the

world that can unfold over different timescales.

An important question for further inquiry is how the nervous system solves problems that

require multiple timescale adaptation. Our idea that the general rules for learning and memory

may have arisen from time-dependent properties of the motor system gains credence from a recent

observation that saccades can fatigue the eye muscles, producing a short-term adaptive response in

the cerebellum36. The compensation of saccadic fatigue is based on the adjustment of a Purkinje

cell simple spike population signal. If this adaptation process is happening in the cerebellum37,38,

the necessary effects could potentially be implemented directly by synapses that exhibit LTD with

power-law characteristics39, 40. Alternatively, at least for small timescales, small groups of neurons
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may jointly represent the estimates along with their uncertainties. A second question is how the

nervous system infers the timescale and noise properties of the disturbances. The Bayesian learner

may begin with a prior assumption about the structure of the ”generative model”, but adapt the

parameters of this model as it experiences the world.

Methods

The Bayesian approach makes it necessary to explicitly specify all the assumptions we are making

about how the motor plant may change over time.

Disturbances Our problem of learning is one of state estimation, where state refers to the state

of the disturbances. Each disturbance was modeled as a random walk that was independent of all

other disturbances:

disturbanceτ (t + Δ) = (1 − 1/τ)disturbanceτ (t) + ετ (1)

where ετ was drawn from a mean zero normal distribution of width στ , and τ was the timescale.

The larger the value for τ , the closer (1 − 1/τ) is to 1 and the longer a disturbance typically lasts.

The motor gain was simply one plus the sum of all the disturbances:

gain(t) = 1 +
∑

τ

disturbanceτ (t) (2)

Eq. (1) is the state update equation. The problem of state estimation is to estimate the states from

measured output (see below). We do this via a Kalman filter. In our simulations each saccade is

simulated as one time step of the Kalman filter. The τ are thus defined in terms of saccades.
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Parameters Only those timescales will matter that are not much longer than the overall time of the

experiment (because they would already have been integrated out) and that are not much shorter

than the time of an individual trial (because they would average out). For that reason we chose the

distribution of τ to be 30 values exponentially scaled between 2 and 33333 saccades. Choosing a

larger number of disturbances while correcting for the overall variance hardly changes the results.

We chose 30 timescales as an approximation to a continuous distribution to allow our simulation

to run fast. Once chosen, the timescales remained fixed. The distribution of expected gains thus

only depended on the distribution of στ , a characterization of how important disturbances were

at various timescales. It seemed plausible that disturbances that had a short timescale tended to

be more variable than those that had a long timescale: over the timescale of about a year we can

double our strength through workout. Over the timescale of a week we can half our strength if

we get ill. And over the timescale of a minute we can half our strength through fatigue. Each

such effect seems to be similarly important - although we acknowledge that there are many more

timescales. Therefore we choose: σ2
τ = c/τ where c is one of the two free parameters of our

model (see supplemental material for an analysis of the sensitivity of these variables). We have

thus specified the prior assumption about the body that drives adaptation.

On each trial the learner made an observation about the state of the motor plant. We assumed

that this observation was corrupted by noise:

observation(t) = gain(t) + w (3)

where w was the observation noise with a width σw. This is the second free parameter in our model.

Throughout this paper we choose σw = 0.05 which we estimated from the spread of saccade gains
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over typical periods of 200 saccades and c = 0.001 because that yielded good fits to the data by

Hopp and Fuchs3. We chose to model all data using the same set of parameters to avoid issues of

over-fitting.

Inference Given this explicit model, Bayesian statistics allowed deriving an optimal adaptation

strategy. Matlab files for repeating these simulations are available online. We observed that the

system was equivalent to the generative model of the Kalman filter41 with a diagonal state transition

matrix M = diag(1−1/τ), an observation matrix H that was a vector consisting of one 1 for each

of the 30 potential disturbances, and a diagonal state noise matrix of Q = diag(cτ −1). State

noise was what was driving the changes of each of the disturbances. This Kalman filter represents

its knowledge about disturbances by two entities, a state vector of length 30 containing the best

estimates at each timescale as well as a matrix V characterizing the uncertainty about that estimate.

We obtained the solution that is well known from the Kalman Filter literature. We used the Kalman

filter toolbox written by Kevin Murphy to numerically solve these equations. To model target jump

experiments we simply add the displacements to the error that is being used by the Kalman learner.

To model the sensory deprivation experiments (i.e., darkness), we made the measurement

noise for those trials set to infinity. To model the experiments for figure 2 we simulated 500

saccades without any feedback. To model long-term learning in the monkey where he spends a

whole night in the dark, we simulated 3000 saccades without sensory feedback.

Contrast adaptation of visual neurons The adaptation state is modeled as a muscle that has a

baseline gain of 40. c = 0.003 and σw = 1 are chosen to model the data. The contrast of the input
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stimulus that is varied in the experiment is modeled as a motor gain change from 20 to 60. Each

second is modeled as 100 time steps for the Kalman filter. Otherwise the same distribution of time

scales (in terms of simulation steps) is retained and the same methods are used.

Word learning To model the retention of memories we treat each learned word as a gain perturba-

tion of 100. c = 0.03 and σw = 1 are chosen to model the data. As words are not used in between

we assume that apart from the learning trials the rest of the time consist just of no observations,

equivalent to darkness in the saccade case. Each year is modeled by 100 time steps for the Kalman

filter. The same distribution of time scales (in simulation steps) is used as in the motor case. The

plotted retention function is the gain of the adapting system.

Acknowledgements Funding for this work was through a Computational Neuroscience Research Grant

from the NIH (NINDS) to the three authors. KPK was also supported by a DFG Heisenberg Stipend. JBT

was also supported by the P. E. Newton Career Development Chair. We want to especially thank Dr. Maurice

Smith and Dr. John Krakauer for inspiring discussions, and the anonymous reviewers whose comments

significantly improved this work.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to K.P.K (email: Kon-

rad@koerding.de).

1. Barton, J. J., Jama, A. & Sharpe, J. A. Saccadic duration and intrasaccadic fatigue in myas-

thenic and nonmyasthenic ocular palsies. Neurology 45, 2065–72 (1995).

21



2. Becker, W. Metrics. In Wurtz, R. H. & Goldberg, M. (eds.) The Neurobiology of Saccadic Eye

Movements, 13–67 (Elsevier, Amsterdam, 1989).

3. Hopp, J. J. & Fuchs, A. F. The characteristics and neuronal substrate of saccadic eye movement

plasticity. Prog Neurobiol 72, 27–53 (2004).

4. McLaughlin, S. Parametric adjustment in saccadic eye movement. Percept. Psychophys. 2,

359–362 (1967).

5. Wallman, J. & Fuchs, A. F. Saccadic gain modification: visual error drives motor adaptation.

J Neurophysiol 80, 2405–16 (1998).

6. Bahcall, D. O. & Kowler, E. Illusory shifts in visual direction accompany adaptation of sac-

cadic eye movements. Nature 400, 864–6 (1999).

7. Scudder, C. A., Batourina, E. Y. & Tunder, G. S. Comparison of two methods of producing

adaptation of saccade size and implications for the site of plasticity. J Neurophysiol 79, 704–15

(1998).

8. Newell, K. M. Motor skill acquisition. Annu Rev Psychol 42, 213–37 (1991).

9. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of

a motor task. J Neurosci 14, 3208–24 (1994). 0270-6474 (Print) Journal Article.

10. Krakauer, J. W., Ghez, C. & Ghilardi, M. F. Adaptation to visuomotor transformations: con-

solidation, interference, and forgetting. J Neurosci 25, 473–8 (2005).

22



11. Robinson, F. R., Soetedjo, R. & Noto, C. Distinct short-term and long-term adaptation to

reduce saccade size in monkey. J Neurophysiol (2006).

12. Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S. & Nagao, S. Memory trace of motor learning

shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139,

767–77 (2006).

13. Kojima, Y., Iwamoto, Y. & Yoshida, K. Memory of learning facilitates saccadic adaptation in

the monkey. J Neurosci 24, 7531–9 (2004).

14. Smith, A., Ghazzizadeh, A. & Shadmehr, R. Interacting adaptive processes with different

timescales underlie short-term motor learning. PLoS Biol 4 (2006).

15. Ruderman, D. L. & Bialek, W. Statistics of natural images: Scaling in the woods. Physical

Review Letters 73, 814–817 (1994).

16. Fairhall, A. L., Lewen, G. D., Bialek, W. & de Ruyter Van Steveninck, R. R. Efficiency and

ambiguity in an adaptive neural code. Nature 412, 787–92 (2001).

17. Ebbinghaus, H. ber das gedchtnis: Intersuchungen zur experimentellen psychologie (Duncker

& Humblot, Leipzig, 1885).

18. Jost, A. Die assoziationsfestigkeit in ihrer abhangigkeit von der verteilung der wiederholungen

[the strength of associations in their dependence on the distribution of repetitions]. Zeitschrift

fur Psychologie und Physiologie der Sinnesorgane 16, 436472 (1897).

23



19. Glenberg, A. Influences of the retrieval processes on the spacing effect in free recall. J. of

Exp. Psychol 3, 282–294 (1977).

20. Wixted, J. T. The psychology and neuroscience of forgetting. Annu Rev Psychol 55, 235–69

(2004).

21. Bahrick, H., Bahrick, L., Bahrick, A. & Bahrick, P. Maintenance of foreign language vocabu-

lary and the spacing effect. Psychological Science 4, 31321 (1993).

22. Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive combination of

motor primitives. Nature 407, 742–7 (2000).

23. Cheng, S. & Sabes, P. N. Modeling sensorimotor learning with linear dynamical systems.

Neural Comput 18, 760–93 (2006).

24. Hinton, G. & Plaut, C. Using fast weights to deblur old memories. In Erlbaum (ed.) 9th

Annual Conference of the Cognitive Science Society, 177–186 (Hillsdale,NJ, 1987).

25. Rescorla, R. A. Spontaneous recovery varies inversely with the training-extinction interval.

Learn Behav 32, 401–8 (2004).

26. Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–92 (2005).

27. Haykin, S. Kalman Filtering and Neural Networks (Wiley, New York, 2001).

28. Gancarz, G. & Grossberg, S. A neural model of saccadic eye movement control explains

task-specific adaptation. Vision Res 39, 3123–43 (1999).

24



29. E, F., M, G. & M, S. Short term saccadic adaptation in the monkey. In E, K. & Zee, D. S.

(eds.) Adaptive Processes in Visual and Oculomotor Systems (Pergamon Press, 1986).

30. Erkelens, C. J. & Hulleman, J. Selective adaptation of internally triggered saccades made to

visual targets. Exp Brain Res 93, 157–64 (1993).

31. Fuchs, A. F., Reiner, D. & Pong, M. Transfer of gain changes from targeting to other types

of saccade in the monkey: constraints on possible sites of saccadic gain adaptation. J Neuro-

physiol 76, 2522–35 (1996).

32. Deubel, H. Separate adaptive mechanisms for the control of reactive and volitional saccadic

eye movements. Vision Res 35, 3529–40 (1995).

33. Whitten, W. B. & Bjork, R. A. Learning from tests: Effects of spacing. Journal of Verbal

Learning and Verbal Behavior 16, 465–478 (1977).

34. Dempster, F. Distributing and managing the conditions of encoding and practice. In Bjork,

E. L. & Bjork, R. A. (eds.) Memory, 317–344 (Academic Press, San Diego, CA, 1996).

35. Anderson, J. R. The adaptive nature of human categorization. Psychological Review 98,

409–429 (1991).

36. Catz, N., Dicke, P. W. & Thier, P. Cerebellar complex spike firing is suitable to induce as well

as to stabilize motor learning. Curr Biol 15, 2179–89 (2005).

37. Barash, S. et al. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J

Neurosci 19, 10931–9 (1999).

25



38. Lewis, R. F. & Zee, D. S. Ocular motor disorders associated with cerebellar lesions: patho-

physiology and topical localization. Rev Neurol (Paris) 149, 665–77 (1993).

39. Barnes, C. A. Memory deficits associated with senescence: a neurophysiological and behav-

ioral study in the rat. J Comp Physiol Psychol 93, 74–104 (1979).

40. Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron

45, 599–611 (2005).

41. Kalman, R. E. A new approach to linear filtering and prediction problems. J. of Basic Engi-

neering (ASME) 82D, 35–45 (1960).

Captions

Figure 1. A generative model for changes in the motor plant and the corresponding response of

a Bayesian learner to performance errors. For illustrative purposes, here we show the results of a

simulation with just two timescales. A) Various disturbances d evolve over time as independent

random walks that linearly combine to change the motor gain. The observed error is a noisy

version of the gain disturbance. B) Sample disturbances and the resulting motor gain. C) The

Bayesian learnerś belief during an experiment where a disturbance suddenly increases the gain of

the motor plant. Before the learner observes the gain, it has a prior belief. The learnerś belief can

be represented by its current estimate of the fast and slow disturbances and its uncertainty about

this estimate. This is termed a prior and is shown in yellow. In this case, the prior has a larger

uncertainty along the fast state. In each trial, the learner observes the disturbance to the motor gain
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(in this case a 30% increase). This observation is represented by the blue line. The observation

is a line and not a point because the disturbance could be due to a fast timescale with magnitude

of 30%, a slow timescale with magnitude of 30%, or any other point along this line. Because the

learner has sensory noise, there is a probability distribution associated with its observation, and

therefore the blue line is hazy. To solve the credit assignment problem, the learner integrates its

observation (blue line) with the prior belief (yellow cloud) to generate a posterior estimate (red

cloud). In this case, because uncertainty was greater for the faster timescales, the observation was

mostly assigned to a fast timescale perturbation. D) The perturbation is sustained for 30 trials.

Now the learner associates the perturbation with a slow timescale.

Figure 2. Short-term and long-term behavior in response to saccadic gain changes. A) Short-

term training. Each dot represents one saccade, the thick lines are exponential fits to the intervals

[0:1400] and [1400:2800]. Starting at saccade number 0, a target is displayed and as soon as the

saccade starts, the target jumps back by 30%. The adaptation that would negate this target jump

is indicated as horizontal dashed lines. This manipulation ends at saccade number 1400, beyond

which are washout trials. Data is from3. B) The same plot is shown for the Bayesian learner.

The color plot shows the learnerś estimateś of the state of each disturbance (we have assumed 30

different states, ranging from very short to very long). The estimate of the mean of each state is

plotted using a color that becomes blue for more negative values (gain less than unity), and red

for more positive values (gain greater than unity). The sum of the various states is the expected

gain of the motor plant with respect to unity. The sub-plots below this figure show the belief of the

Bayesian learner during the initial stages of gain-decrease and then after 30 trials, approximated
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by two timescales. C) Long-term training. In this experiment the saccadic gain was reduced over

many days of training. At the end of each training session the monkey was blind-folded and held in

darkness for the remainder of the day. Note that the rate of re-learning in day 2 following darkness

is faster than initial learning. Data is from11. Black lines show exponential fits to the data. D) The

same plot for the Bayesian learner along with a colorplot showing the estimate of the learner of the

disturbance at each timescale. E) Comparison of the saccadic gain change time course obtained by

fitting an exponential function to the set of all saccades during the day.

Figure 3. The double reversal paradigm. A) The gain is first adapted up until it reaches

about 1.2 with a target jump of +35%. Then it is adapted down with a target jump of -35%. Once

the gain reaches unity it is again adapted up with a positive target jump. Data is from13. The box

indicates the trials where the line was fitted. The number on the line indicates its slope. B) The

speed of adaptation (slope of the lines in part A) is compared between the first gain-up and the

second gain-up trials in different sessions of training. The monkey exhibits savings in that it re-

learns faster despite the apparent washout. C) The performance of the Bayesian learner is shown

along with a colorplot showing the estimate of the learner of the disturbance at each timescale.

D) The rate of adaptation for the Bayesian learner. E) In this experiment, the reversal training is

followed by a period of darkness, and then gain-up adaptation13. Saccade gain shows spontaneous

recovery. F) The same plot for the Bayesian learner along with a colorplot showing the estimate

of the disturbance at each timescale. G) In this experiment, the period of darkness is followed

by a condition where the target does not change position during the saccade period (i.e., no intra-

saccadic step, ISS)13. The animal does not show spontaneous recovery. H) The same plot for the

28



Bayesian learner along with a colorplot showing the estimate of the disturbance at each timescale.

.

Figure 4. The Bayesian learner outside of movement settings. A) The response of a neuron

in the fly is shown to a visual stimulus that changes its standard deviation, switching between

two levels (data from16). B) The data is modeled by a system with many timescales that drifts

towards a mean of 40 spikes/second. The parameters c and σw have been tuned to explain the

data. C) Declarative memory data reprinted from21. For word translations that had been learned

with different intervals between training sessions the retention function is shown. D) The retention

function of a Bayesian learner with tuned parameters c and σw.
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